Skip to main content

Best Ways to Initialize variables in Java programming - 2022 reviewed



When the variables in the example above are declared, they have an undetermined value until they are assigned a value for the first time. But it is possible for a variable to have a specific value from the moment it is declared. This is called the initialization of the variable.

In C++, there are three ways to initialize variables. They are all equivalent and are reminiscent of the evolution of the language over the years:

The first one, known as c-like initialization (because it is inherited from the C language), consists of appending an equal sign followed by the value to which the variable is initialized:

type identifier = initial_value;
For example, to declare a variable of type int called x and initialize it to a value of zero from the same moment it is declared, we can write:

 
int x = 0;



A second method, known as constructor initialization (introduced by the C++ language), encloses the initial value between parentheses (()):

type identifier (initial_value);
For example:

 
int x (0);



Finally, a third method, known as uniform initialization, similar to the above, but using curly braces ({}) instead of parentheses (this was introduced by the revision of the C++ standard, in 2011):

type identifier {initial_value};
For example:

 
int x {0}; 



All three ways of initializing variables are valid and equivalent in C++.


// initialization of variables

#include <iostream>
using namespace std;

int main ()
{
  int a=5;               // initial value: 5
  int b(3);              // initial value: 3
  int c{2};              // initial value: 2
  int result;            // initial value undetermined

  a = a + b;
  result = a - c;
  cout << result;

  return 0;
}
 
print out
 
6 


Popular posts from this blog

Introduction to strings

Fundamental types represent the most basic types handled by the machines where the code may run. But one of the major strengths of the C++ language is its rich set of compound types, of which the fundamental types are mere building blocks. An example of compound type is the string class. Variables of this type are able to store sequences of characters, such as words or sentences. A very useful feature! A first difference with fundamental data types is that in order to declare and use objects (variables) of this type, the program needs to include the header where the type is defined within the standard library (header <string> ): // my first string #include <iostream> #include <string> using namespace std; int main () { string mystring; mystring = "This is a string" ; cout << mystring; return 0; }   printout:   This is a string As you can see in the previous example, strings can be initialized with any valid string l...

Best chess matchup: Peaceful_Moon_4D vs IM Toro123

Fundamental data types

The values of variables are stored somewhere in an unspecified location in the computer memory as zeros and ones. Our program does not need to know the exact location where a variable is stored; it can simply refer to it by its name. What the program needs to be aware of is the kind of data stored in the variable. It's not the same to store a simple integer as it is to store a letter or a large floating-point number; even though they are all represented using zeros and ones, they are not interpreted in the same way, and in many cases, they don't occupy the same amount of memory. Fundamental data types are basic types implemented directly by the language that represent the basic storage units supported natively by most systems. They can mainly be classified into: Character types: They can represent a single character, such as 'A' or '$' . The most basic type is char , which is a one-byte character. Other types are also provided for wider charac...